Study of \(\alpha\)-cluster transfer reaction with \(^7\)Be

K. Kundalia\(^1\),* Swapan K. Saha\(^1\),† Sk M. Ali\(^1\), D. Gupta\(^1\),‡ O. Tengblad\(^2\), J. D. Ovejas\(^2\), A. Perea\(^2\), I. Martel\(^3\), J. Cederkall\(^4\), J. Park\(^4\), and S. Szwec\(^5\)

\(^1\)Department of Physics, Bose Institute, Kolkata 700009, India
\(^2\)Instituto de Estructura de la Materia - CSIC (IEM-CSIC), Serrano 113 bis, ES-28006 Madrid, Spain
\(^3\)University of Huelva, Av. Fuerzas Armadas s/n. Campus El Carmen, 21007, Huelva, Spain
\(^4\)Lund University, Box 118, 221 00 Lund, Sweden and
\(^5\)University of Jyväskylä, Survontie 9D, 40500 Jyväskylä, Finland

Introduction

The \(\alpha\)-cluster transfer reaction studies involving loosely bound stable and unstable nuclei have a profound impact on astrophysics. In particular, the reactions with \(^6\)Li and \(^7\)Li have been widely used to get spectroscopic factors and reduced \(\alpha\)-widths. These quantities in turn have been successfully utilized in the understanding of stellar nucleosynthesis [1,2]. In the present work, we have studied \(\alpha\)-transfer reaction with the radioactive nucleus \(^7\)Be on \(^{12}\)C at 5 MeV/A.

Experimental setup

We have carried out an experiment at HIE-ISOLDE, CERN with \(^7\)Be beam of intensity \(\sim\) \(5\times10^5\) pps. We used deuterated polyethylene (CD\(_2\)) target of thickness 15 \(\mu\)m. The detector setup consisted of a 1000 \(\mu\)m annular silicon detector (S3) covering angles 8° - 25°. Five 16 \(\times\) 16 double-sided silicon strip detectors (DSSD) backed by 1500 \(\mu\)m thick unsegmented Si detectors in a \(\Delta E\) - \(E\) telescope configuration cover angles 40° - 80° in a pentagon geometry. At the back angles, two 32 \(\times\) 32 DSSDs of thickness 60 \(\mu\)m and 140 \(\mu\)m backed by 1500 \(\mu\)m unsegmented silicon pad detectors cover 120° - 140°. This setup covers 29% of the total solid angle 4\(\pi\) [3].

Analysis

The transfer reaction, \(^{12}\)C\((\ ^7\)Be,\(^3\)He)\(^{16}\)O has been studied and compared to similar reaction from the mirror counterpart \(^7\)Li. A typical \(\Delta E\) - \(E\) tot plot with angular correction and the front-back matching of energy within the tolerance 500 keV is shown in Fig. 1. The banana gate drawn on this plot selects the particle of interest, \(^3\)He. Subsequently, those events give the energy spectrum showing the excitation states of \(^{16}\)O (Fig. 2).

\(^*\)Electronic address: kkabita@jcbose.ac.in
\(^\dagger\)Electronic address: swapan@jcbose.ac.in
\(^\ddagger\)Electronic address: dhruba@jcbose.ac.in
In Fig. 2, the energy spectrum of ^3He at $\theta_{\text{lab}} = 44^\circ$ shows the ^{16}O excited states at 6.049, 6.917 and 10.36 MeV. In the figure, we also show the relevant simulation using NPTool [4], a package built on GEANT4 and ROOT.

Conclusions and outlook
The spectra show higher level excitations of ^{16}O up to 25 MeV. Our angular coverage will allow us to arrive at improved angular distribution as compared to earlier data [5]. Since ^7Be has a prominent α-cluster structure, its breakup channel is also being investigated as compared to the above transfer reaction. Data analysis is underway.

Acknowledgment
We thank the ISOLDE engineers incharge, RILIS team and Target group at CERN for their support. DG acknowledges financial support from ENSAR2 (Grant no. 654002) and ISRO, Govt. of India (Grant no. ISRO/RES/2/378/15-16).

References