NJL model estimation of anisotropic electrical conductivity for quark matter in presence of magnetic field

Jayanta Dey* and Sabyasachi Ghosh
Indian Institute of Technology Bhilai, GEC Campus, Sejbahar, Raipur 492015, Chhattisgarh, India

Aritra Bandyopadhyay and Ricardo L. S. Farias
Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil

Gastão Krein
Instituto de Física Teórica, Universidade Estadual Paulista, 01140-070 São Paulo, SP, Brazil

Present work has gone through the microscopic calculation of electrical conductivity of quark matter in presence of magnetic field, where Nambu-Jona-Lasinio model is considered for mapping the interaction picture of the medium. Let us start with Ohm’s law

\[J^i_D = \sigma^{ij} E_j \]

where \(J^i_D \) is dissipative current, \(\sigma^{ij} \) electric conductivity tensor and \(E_j \) is electric field. Now for a fluid of quark having spin-color degeneracy \(g \) and electric charge \(q_f \) dissipative current from kinetic theory framework can be written as,

\[J^i_D = q_f g \int \frac{d^3p}{(2\pi)^3} \vec{v} \delta f \]

Where \(\delta f \) is small deviation of quark distribution function from the equilibrium Fermi-Dirac distribution of quark \(f_0 = \frac{1}{e^{\frac{\mu}{T}} + 1} \). In terms of 3-momentum (\(\vec{p} \)) and energy (\(\omega \)) particle velocity can be written as \(\vec{v} = \frac{\vec{p}}{\omega} \) with \(\omega = \sqrt{\vec{p}^2 + M^2} \). Now to find \(\delta f \) in presence of electric field \(\vec{E} \) and magnetic field \(\vec{B} \) we use relaxation time approximation (RTA) in Boltzmann’s equation, where we can assume a general force term

\[\vec{F} = \alpha \vec{e} + \beta \vec{b} + \gamma \vec{e} \times \vec{b} \]

where \(\vec{e}, \vec{b} \) are unit vectors along \(\vec{E} \) and \(\vec{B} \). Connecting \(\delta f \) and \(\vec{F} \) suitably [1, 2], the coefficients \(\alpha, \beta \) and \(\gamma \) can be found as

\[\alpha = q \left(\frac{\tau_c}{\omega} \right) \frac{1}{1 + (\tau_c/\tau_B)^2} \vec{E}, \]

\[\beta = q \left(\frac{\tau_c}{\omega} \right) \frac{(\tau_c/\tau_B)^2}{1 + (\tau_c/\tau_B)^2} (\vec{e} \cdot \vec{B}) \vec{E}, \]

\[\gamma = -q \left(\frac{\tau_c}{\omega} \right) \frac{(\tau_c/\tau_B)^2}{1 + (\tau_c/\tau_B)^2} \vec{E}, \]

where \(\tau_B \) and \(\tau_c \) as magnetic and thermal relaxation time. After taking care of all degeneracy factors of \(u \) and \(d \) quarks, we get the 3 components of electrical conductivity, whose general expressions can be written as

\[\sigma_n = c^2 \beta \frac{20}{9} \int \frac{d^3p}{(2\pi)^3} \omega^2 \left(\frac{\tau_c}{\tau_B} \right)^n f_0(1-f_0) \]

with \(n = 0, 1, 2 \). We will use temperature (\(T \)) and magnetic field (\(B \)) dependent effective quark mass from NJL model, briefly discussed below, in Eq. (5) to estimate \(\sigma_n \) of quark matter.

The Lagrangian density for the isospin-symmetric (\(m_u = m_d \)) two-flavor version of NJL model in presence of electromagnetic field \((A^\mu) \) is given by

\[L_{NJL} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \bar{\psi} (\gamma^5 \vec{D} - m) \psi + G \left((\bar{\psi}\psi)^2 + (\bar{\psi}\gamma_5 \vec{T}\psi)^2 \right), \]

*Electronic address: jayantad@iitbhilai.ac.in

Available online at www.sympnp.org/proceedings
FIG. 1: Temperature dependence of three components of electrical conductivities \((\sigma_{0,1,2})\) with \(eB = 0.2\ \text{GeV}^2\) and \(\sigma\) (without \(B\)) for \(\tau_c = 5\ \text{fm}\) (b) and \(0.2\ \text{fm}\) (d). \(\Delta \sigma_n/\sigma = (\sigma_n - \sigma)/\sigma\) for \(\tau_c = 5\ \text{fm}\) (a) and \(0.2\ \text{fm}\) (c).

Where, \(D_\mu = i\partial_\mu - QA_\mu\) with \(Q = \text{diag}\(q_u = 2e/3, q_d = -e/3\)\) as the charge matrix. In quasi-particle approximation, the gap equation for the constituent quark mass \(M\) at finite \(T\) and \(B\) is given by

\[
M(B,T) = m - 2G(B,T) \sum_{f=u,d} \langle \bar{\psi}_f \psi_f \rangle, \quad (7)
\]

where \(\langle \bar{\psi}_f \psi_f \rangle\) represents the quark condensate of flavor \(f\), and a thermo-magnetic NJL coupling constant \(G(B,T)\) has been considered [3, 4]. In Figs. 1(b) and (d), we present the temperature dependence of the different components of electrical conductivities \(\sigma_n\) (scaled with \(T\)) in presence of an external magnetic field as well as the without field case,

\[
\sigma = e^2 \beta \frac{20}{9} \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{|\vec{p}|} T \tau_c f_0(1 - f_0). \quad (8)
\]

The difference \(\Delta \sigma_n/\sigma = (\sigma_n - \sigma)/\sigma\) are also plotted in Figs. 1(a) and (c) which emphasize the effect of external magnetic field on each components. The results are presented with a fixed value of \(eB = 0.2\ \text{GeV}^2\) but for two different values of \(\tau_c\), i.e. \(\tau_c = 5\ \text{fm}\) (a,b) \(\tau_c = 0.2\ \text{fm}\) (c,d), which can be assigned with the zones \(\tau_c > \tau_B\) and \(\tau_c < \tau_B\) respectively. It means that \(eB = 0.2\ \text{GeV}^2\) may be considered as stronger magnetic field for \(\tau_c = 5\ \text{fm}\) and weaker magnetic field for \(\tau_c = 0.2\ \text{fm}\). Therefore, former case is showing \(\sigma_2 > \sigma_0\) and latter case is showing \(\sigma_2 < \sigma_0\). It is controlled by the anisotropic function \(eB/|\vec{p}|\). In terms of the anisotropy, the above outcomes can be briefly sketched, or:

- for \(\tau_c = 5\ \text{fm}\)
 \[
 \sigma^{xx} = \sigma^{yy} < \sigma^{zz} \Rightarrow \text{larger anisotropy} \quad (9)
 \]
- for \(\tau_c = 0.2\ \text{fm}\)
 \[
 \sigma^{xx} = \sigma^{yy} \approx \sigma^{zz} \Rightarrow \text{smaller anisotropy} \quad (10)
 \]

when external magnetic field \(eB = 0.2\ \text{GeV}^2\) is along the z-direction. As seen from Fig. 1, all the components of the electrical conductivities increase with temperature with a kink near the quark-hadron phase transition temperature \(T_c\) and rate of increments are also different for two different phases.

References

