Investigation of triaxiality in the Ba nuclei near N=82 shell closure

Suresh Kumar∗
Department of Physics and Astrophysics, University of Delhi, Delhi-110007, India

Spectroscopy study of Ba nuclei in mass A=135 region performed with INGA array to look insight into phenomena like triaxiality and magnetic rotation. In present contribution, I will review the results obtained with INGA array to investigation of triaxiality in the 133,134,135Ba nuclei.

The nuclei around the A = 135 mass region are transitional in nature with a moderate deformation and softness with respect to triaxiality. Several interesting phenomena, such as shape coexistence of prolate and oblate deformations [1, 2], high spin structures based on isomers and excited states with multi-quasiparticle configurations have been observed [2–4] in the nuclei from Xe to Nd. Further, nuclear triaxiality is also expressed as wobbling motion and have been discussed by Bohr and Mottelson [5]. Recently, the wobbling motion has also been reported in the 139Pr [6] and 133La [7] nuclei, which further supports triaxiality in this mass region. In addition to it, the observation of $I^π = 10^−, 7^−, 5^−, 19/2^+$ and $25/2^−$ isomeric states is a typical feature in most of the nuclei. The 133,134,135Ba nuclei lie near the neutron shell closure at N = 82 and in the proton mid-shell between Z = 50 and 64 shell closures. In these nuclei, an interplay of quadrupole collectivity and single-particle degrees of freedom could exist even in the relatively low-lying states and have possibility to demonstrate the excitation modes of a triaxial nucleus.

The high spin states of 135Ba were populated by about 54 percent of the total cross-section in the 139Te(12Be,4n)135Ba reaction at a beam energy of 42.5 MeV and detail of experimental set-up and data analysis is given in Ref [1]. The excited states of the 133,134Ba nucleus were populated using the 124Sn(13C, xn)133,134Ba reaction at a beam energy of 48 MeV (INGA TIFR). Details on Data analysis and the measurement of both polarization asymmetry and DCO ratio can be found in Ref. [8, 9].

From the systematics of the energy levels belonging to the this band [1], it appears that it is more regular in 135Ba than in other N = 79 higher even-Z nuclei. A 3qp configuration $\pi(h_{11/2}g_{7/2}) \otimes \nu(h_{11/2})^{-1}$ was used in the TAC calculations for the positive parity dipole band. The pairing parameter Δ_π and Δ_ν calculated as 80% of the odd-even mass difference are 0.896 MeV and 0.926 MeV, respectively. A minimum was found at the deformation parameters $\epsilon_2 = 0.095, \epsilon_4 = -0.013, \gamma = 26^\circ$ with an average tilt angle $\angle = 56.4^\circ$ which corresponds to a triaxial shape. The calculations based on this configuration seem to explain the observed behaviour of E vs. $I(h)$ as shown in Fig. 1. The calculated results match reasonably well with the measured values. The calculated B(M1) values also decrease with increase in h_ω i.e. from 2.9 to 1.2 μ_N^2, while B(E2) value increase with with increase in h_ω i.e. form 0.010 to 0.025 (eb)2.

Thus, based on the systematics and the TAC calculations, we suggest that the positive parity dipole band built on the 3082.8 keV state has the $\pi(h_{11/2}g_{7/2}) \otimes \nu^{h_{11/2}}$ 3qp configuration. This comparison with calculated results suggests that this band may have magnetic rotation nature. The partial level scheme above the 2957.1 keV isomer with spin $I^\pi = 10^+$ is extended up to 7712.9 keV level with maximum spin $I^\pi = (20^-)$ [9]. A negative parity band labeled as band D1 is established above the 5677.9 keV level. The 171.3–, 176.6–, 278.9–, 388.7–,

Available online at www.sympnp.org/proceedings

∗Electronic address: sursvmk123@gmail.com
448.0- and 571.4 keV γ-ray transitions constituting this band. The TAC calculations were performed using the 4-qp $\pi[h_{11/2}(g_{7/2}/d_{5/2})] \otimes \nu[h_{11/2}]^2$ configuration and results a minimum at $\epsilon_2 = 0.090$ and $\gamma = 60$ with an average tilted angle $\theta = 40^\circ$. The calculated $B(M1)$ and $B(M1)/B(E2)$ ratios along with the systematic studies in the neighboring nuclei shows the magnetic rotational character of the dipole band D1.

A partial level scheme of the 133Ba nucleus [8], comprises - Band A, Band B, Band C, Band D and the interconnecting transitions and is shown in Fig. 2. The structure of the Band D is very similar to the band structure which is reported in the 135Ba nucleus. For a wobbler band named as Band B, the $\Delta I = 1$ should, linking transitions should have strong E2 nature. The RDCO and polarization asymmetry values of the interlinking transitions between Band A and Band B are compared with the values of linking transitions of the wobbler bands in the 135Pr [6] and 133La [7] nuclei. The wobbling energies E_{wob}(MeV) show decreasing behaviour with spin(I)h. This trends of E_{wob}(MeV) along with electric nature of linking transition confirms that Band A and Band B arises from $n_\omega = 0$ and $n_\omega = 1$, may have transverse wobbling in the 133Ba nucleus. Also, same is also true from the alignment plot.

The structure of the 135,134,133Ba nucleus has been investigated using the 130Te(9Be,xn) and 124Sn(13C,xn) reactions and more results will be present during the talk.

The financial assistance received (IUAC project (UFR - 51320) and INGA project (No. IR/S2/PF-03/2003-I)) and support/help by the Petletton and target Lab at at TIFR, Mumbai and IUAC, New Delhi are highly appreciated and acknowledged.

References