Bound and unbound states of ¹¹⁵Xe

P.Das^{1,2}, J.Ray¹, Ushasi.Datta^{1,2},* S.Chakraborty^{1,3}, A.Rahman^{1,4}, P.Das^{1,2}, J.Ray¹, Ushası.Datta^{1,2},* S.Chakraborty^{1,3}, A.Rahman^{1,4},
M.J.G.Borge^{5,6}, O.Tengblad⁵, A.N.Andreyev⁷, A.Becerril⁵, P.Bhattacharya¹,
A.Bhattacharyya^{1,2}, J.Cederkall⁸, H.De Witte⁹, L.M.Fraile¹⁰, A.Gottberg^{6,12},
P.T.Greenless^{13,14}, L.J.Harkness-Brennan¹⁵, M.Huyse⁹, D.S.Judson¹⁵,
J.Konki^{13,14}, M.Kowalska⁶, J.Kurcewicz⁶, I.Lazarus¹⁶, R.Lica⁶, M.Lund¹¹,
S.Mandal¹⁷, M.Madurga⁶, N.Marginean¹⁸, R.Marginean¹⁸, C.Mihai¹⁸,
I.Morroquin⁵, E.Nacher⁵, A.Negret¹⁸, R.D.Page¹⁵, S.Pascu¹⁸, A.Perea⁵,
V.Pucknell¹⁶, P.Rakhila¹³, E.Rapisarda⁶, F.Rotaru¹⁸, C.O.Sotty⁹,
P.Van Duppen⁹, V.Vedia¹⁰, N.Warr¹⁹, T.Stora⁶, and R.Wadsworth⁷
¹Saha Institute of Nuclear Physics. Nuclear physics Division. Kolkata. India Saha Institute of Nuclear Physics, Nuclear physics Division, Kolkata, India ²Homi Bhabha National Institute, Mumbai, India ³University of Engg. and Management, Kolkata, India ⁴ Jalpaiguri Govt. Engg. College, Jalpaiguri, West Bengal, India Inst. de Estructura de la Materia, CSIC, Madrid, Spain 6 ISOLDE, CERN, Geneva, Switzerland ⁷University of York, Department of Physics, York YO10 5DD, North Yorkshire, United Kingdom ⁸University of Lund, Sweden ⁹KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, 3001 Leuven, Belgium ¹⁰Grupo de Fisica Nuclear, and IPARCOS, Facultad de CC. Físicas, Universidad Complutense, CEI Moncloa, 28040 Madrid, Spain ¹²TRIUMF, Vancouver, Canada ¹³University of Jyvaskyla, Department of Physics, P.O. Box 35, FI-40014 University of Jyvaskyla, Finland ¹⁴Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland ¹⁵Department of Physics, Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom ¹⁶STFC Daresbury, Daresbury, Warrington WA4 4AD, United Kingdom ¹⁷ University of Delhi, Delhi, India ¹⁸ University of Bucharest, Faculty of Physics, Atomistilor 405, Bucharest-Magurele, Romania and ¹⁹Institut fur Kernphysik, Universitat zu Koln,

Zulpicher Strasse 77, D-50937 Koln, Germany

Introduction

In this article the study of exotic decay mode of the neutron deficient nucleus $A \sim 115$ close to the proton drip-line will be presented. Many interesting properties are observed in the nuclei close to drip line. These prop-

erties are the disappearance of magic numbers[1], appearence of PIGMY resonance[2], exotic decay[3], exotic cluster structure [4] etc. ¹¹⁵Cs is located close to the proton drip line with a half-life of 1.03(10)sec [4]. Due to large Q value for beta-decay of this dripline nucleus, the daughter nucleus may populate above particle(s) thresold. For ¹¹⁵Cs: Q_{EC} is 8.96(10) MeV. In case of ¹¹⁵Xe: S_p , S_{2p} , S_{α} are 3.15(15)MeV, -4.89(3)MeV and 2.506(14)MeV respectively. So many decay

^{*}Electronic address: ushasi.dattapramanik@saha. ac.in

FIG. 1: ISOLDE facility at Cern.

channels open: $\beta - \gamma$, $\beta - p$, $\beta - p - \gamma$, $\beta - 2p$, $\beta - 2p - \gamma$. Therefore beta-delayed particle emission take place. We have calculated the delayed proton branch and delayed alpha branch for this isotope are 0.64% and 0.23% resspectively[5].

Experimental Setup

This experiment was performed at ISOLDE, CERN. The pulses of 1 GeV protons from PS Booster were impacted on a Lanthanum Carbaide target and after fragmentation/spallation reaction radioactive beams were produced and from there ¹¹⁵Cs was separated and by mass spectrometer (GPS) which is shown in figure 1. This secondary with energy upto 60 keV /nucleon beam was transferred to the experimental area and implanted projected on a carbon target. In experimental room there are 5 DSSD (Double Sided Silicon Strip Detectors), 4 PAD detectors behind the DSSD (behind the lower DSSD there is no PAD) as shown in figure 2. Four High-Purity Germanium(HPGe) clover detectors surround the chamber to provide high Gamma-Ray detection efficiency.

Data analysis and Spectrum

For the calibration of silicon detectors some standard Alpha sources were used which were ¹⁴⁸Gd₆₄, ²⁴¹Am₉₅, ²³⁹Pu₉₄, ²⁴⁹Cf₉₈. And for the calibration of HPGe a standard gamma source ¹⁵²Eu was used. After the calibration of the detectors, we have produced the beta

FIG. 2: Arrangement of DSSD and PAD detectors set-up during experiment (IS545)

FIG. 3: Overlayed beta gated gamma spectrum with background gamma spectrum.

gated gamma spectrum and pure backgroud spectrum. Figure 3 shows the the overlay of these two gamma spectra and which shows gamma-lines of daughter nucleus(¹¹⁵Xe). In this presentation, we shall report also unbound states of ¹¹⁵Xe from measurement of delayed particles decay [5,6].

References

- [1] U.Datta et al., PRC 94, 034304 (2016).
- [2] P.Adrich et al., Phys.Rev.Lett. 95, 132501 (2005).
- [3] M J G Borge, Phys. Scr. 014013 (2013).
- [4] U.Datta et al., AIP 2038, 020020 (2018).
- [5] P.Das, U.Datta et al., Journal of Physics. 1643(2020).
- [6] P.Das, U.Datta et al., Manuscript under preparation.