Neutron multiplicity in the proton-fission of some actinides

F. A. Khan

Department of Physics, GDC Pulwama, Higher Education Department, Srinagar - 190009, INDIA * email: 29firdous11@gmail.com

Introduction

Mean prompt fission neutron multiplicity, \bar{v} and mean neutron energies, \bar{E}_n of the neutron spectra are calculated for the proton-fission of 6 actinides ($N/Z = 1.57\pm0.02$). The calculation was performed for the incident proton energy from 5 - 10 MeV.

Calculation and Results

1

A total of 10^5 fission events were simulated using the GEF code, Version 2018/1.1 [1]. \bar{v} and E_n were calculated for U-235, U-238, Np-237, Pu-239, Pu-240 and Pu-240 for incident proton energies from threshold to 10 MeV. The threshold energy values were determined by the JENDL-4.0 Library [2] data.

All the actinides show the straight line behavior as

$$\phi_i(E_P) = a_i + b_i E_P \tag{1}$$

 a_i and b_i values are given in the table for all the actinides. a_i represents value of \bar{v} as $E_P \rightarrow 0$, while as b_i represents the rate of increase of \bar{v} with E_P .

Actinide	a_i	b_i
U-235	1.98	0.17
U-238	2.42	0.14
Np-237	2.43	0.17
Pu-239	2.37	0.16
Pu-240	2.55	0.14
Pu-242	2 77	0.14

It is seen that the odd nuclei (U-235, Np-237, Pu-239) have the higher rate of increase (0.17) of neutron multiplicity with E_P than the even nuclei (U-238, Pu-240, Pu-242), which corresponds to

the ratio $\frac{\overline{v}_{Odd}}{\overline{v}_{Even}} = 1.2$ for the same energy E_P . The \overline{v} values for the actinides is found to fall in the range 3.5 ± 0.7 . The fissility parameter, $f (= Z^2/A)$, plotted shows that odd nuclei fissility values lie on a straight line with a positive slope, while as the even ones show the quadratic variation with the mass number A. Of all the actinides, U-235 has the lowest \overline{v} values for all the energies, while as Pu-242 acts as the hottest system.

with highest \bar{v} value for all the E_P . Higher neutron emission from Pu-242 may be assigned to the higher nucleon number and hence the lower binding energy.

Np-237 and Pu-242 attain almost the same value of $\bar{v} \approx 4.2$) at $E_P = 10$ MeV. Np-237 has \bar{v} value next only to Pu-242 for all the E_P energies. \bar{E}_n versus E_P shows an oscillatory behavior for all the actinides. At 5 MeV, U-238 (least *f*) has the least value of \bar{E}_n (2.08 MeV), while as Np-237 has the maximum value (2.25 MeV) at 10 MeV. For U-238, the maximum value of \overline{E}_n occurs at 6 MeV proton energy.

Conclusion

 \bar{v} obtained fall in the range 3.5±0.7 for all the actinides considered and show the linear variation with the $E_{\rm P}$. For all $E_{\rm P}$, U-235 has the lowest value of \bar{v} , while as Pu-242 acts as the hottest system with the highest value of \bar{v} . At 10 MeV, Np-237 and Pu-242 attain almost the same value of $\bar{v} \approx 4.2$).

 \overline{E}_n versus E_P shows an oscillatory behavior for all the cases. At 5 MeV, U-238 with the least *f* has the least value of \overline{E}_n (2.08 MeV), while as at the same energy Pu-239 (maximum *f*) has the maximum value (2.18 MeV). At 10 MeV, U-238 keeping the lowest value (2.06 MeV), Np-237 attains the highest one (2.25 MeV).

References

 http://www.khs-erzhausen.de, GEF Nuclear Reaction Program, Schmidt KH, Jurado B.
https://www-nds.iaea.org.