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The Coulomb excitation is a process of 

exciting projectile/target nucleus via the very 

well understood electromagnetic interaction of 

the target/projectile [1-2]. It is one of the 

reliable tools to extract required nuclear 

information such as energy of excited states 

and transition matrix elements for normal as 

well as exotic nuclei. The essential condition 

for extracting various nuclear information 

unambiguously from the CE experiments is to 

maintain the purity of the CE processes. In the 

analysis of intermediate energy Coulomb 

excitation data, the incident energy of the 

projectile is greater than the Coulomb barrier 

energy between colliding projectile and the target 

ions. Therefore, in case of intermediate energy 

CE experiments the projectile is likely to be 

under the joint influence of the electromagnetic 

and strong nuclear interactions. However, in 

order to obtain reliable information through 

these experiments the influence of strong 

nuclear interaction is required to be completely 

omitted (if possible) or to be minimized. 

Thus the experimentalists resort to forward angle 

(𝜃𝑙𝑎𝑏
𝑚𝑎𝑥) scattering measurements in order to avoid 

the influence of the strong nuclear interactions. 

The 𝜃𝑙𝑎𝑏
𝑚𝑎𝑥, which is experimentally observable, is 

used to determine the minimum value of impact 

parameter (𝑏𝑚𝑖𝑛) as both are interconvertible. 

Although 𝑏𝑚𝑖𝑛  is not an experimental observable, 

but it makes the theoretical analysis of the data 

observed in these experiments very convenient. 

Consequently, a lot of scheme has already been 

proposed to determine the value of 𝑏𝑚𝑖𝑛  and are 

broadly subdivided in two categories. The first one 

comprises of a number of indirect, energy 

independent and intuitive schemes while the 

second one comprises of only one scheme - which 

is direct, energy dependent and based on firm 

theoretical basis [3]. The indirect schemes here, 

refer to the schemes which were originally 

proposed for some other purposes and not 

specifically for the determination of 𝑏𝑚𝑖𝑛. The 

opposite is true for the direct scheme. The Value of 

𝑏𝑚𝑖𝑛  determined via the direct scheme shall 

hereafter be referred to as 𝑏𝑚𝑖𝑛
𝐷 . The direct scheme 

adopted to determine 𝑏𝑚𝑖𝑛
𝐷  is based on the concept 

of survival probability of the projectile [3]. The 

𝑏𝑚𝑖𝑛
𝐷  is that value of impact parameter for which 

the value of the CE cross section excluding |𝑆(𝑏)|2 

i.e. 𝜎  (eq. 2) and CE cross section including 

|𝑆(𝑏)|2 i.e. 𝜎|𝑆(𝑏)2| (eq. 3) are in excellent 

agreement with each other [4]. Any significant 

disagreement between 𝜎 and 𝜎 |𝑆(𝑏)2| is a clear 

indication of the involvement of strong nuclear 

interactions. The expression for 𝑏𝑚𝑖𝑛
𝐷  is given by 

𝑏𝑚𝑖𝑛
𝐷 = 1.2 (𝑅𝑃 + 𝑅𝑇)(1 +

16310

𝑒𝑥𝑝
(

𝛾
0.0887

)
)               (1) 

with 𝛾 as relativistic Lorentz factor and 𝑅𝑃(𝑇) =

1.2 𝐴
𝑃(𝑇)

1
3⁄

, 𝐴𝑃(𝑇) being the mass number of 

projectile(target).  

The expression for Coulomb excitation cross 

sections  𝜎 and 𝜎|𝑆(𝑏)2| are given below [2, 5] 

𝜎 = 2𝜋 ∫ 𝑃𝑛(𝑏)𝑏𝑑𝑏
∞

𝑏𝑚𝑖𝑛
,                                             (2)                                                                                                            

𝜎|𝑆(𝑏)2| = 2𝜋 ∫ 𝑃𝑛(𝑏)|𝑆(𝑏)|2𝑏𝑑𝑏
∞

𝑏𝑚𝑖𝑛
,                    (3)                                                                                                

 𝑃𝑛(𝑏) denotes the CE probability of intrinsic state 

⃓𝑛 > in a collision with impact parameter 𝑏. Now, 

the expression for evaluating |𝑆(𝑏)|2, in terms of 

imaginary part of projectile target nuclear 

potential, is written as [6] 

|𝑆(𝑏)|2 = 𝑒𝑥𝑝 [
2

ℏ𝒗
∫ 𝐼𝑚[ 𝑈𝑃𝑇(𝑟)]𝑑𝑧].                     (4)                                                                                           

here, 𝑈𝑃𝑇(𝑟)  is projectile target nuclear potential. 

It is clear from eq. (4) that |𝑆(𝑏)|2 depends on  𝑈𝑃𝑇 

which can be constructed via single folding or 

double folding procedure.  

In single folding, like that of proposed by R L 

Varner, the nucleon target potential is folded over 

nuclear matter density of the projectile [7]. In 

double folding model, the nucleon-nucleon 

interactions like M3Y (Michigan3Yukawa) are 

folded over nuclear matter density of the projectile 

as well as target [5]. Therefore, it is interesting to 

see the consequences of replacing the single 

folding model based potential by double folding 

model based potential on the direct scheme to 

decide the 𝑏𝑚𝑖𝑛
𝐷 . For the purpose of constructing a 

double folded potential 𝑈𝑃𝑇(𝑟) the nucleon-
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nucleon interaction used in present work is of 

M3Y-Reid interaction type. It is used to determine 

the imaginary part of the potential through the 

following relation 

 𝐼𝑚 𝑈𝑜𝑝𝑡(𝑟) = 𝜆𝑈𝑃𝑇(𝑟).                                           (5)                                                                                                                    

 

here, 𝜆 denotes the renormalization constant and 

we have adopted the value of 𝜆 as 0.7.    

 In present work, we have investigated the 

sensitivity of the direct scheme used to decide the 

𝑏𝑚𝑖𝑛
𝐷 , on the nuclear potential by considering as 

many as 15 systems having projectile with mass 

ranging from 26 to 112 on Bi and Au targets at, 

incident energies from 65 MeV/A to 147 MeV/A 

[8-13].   
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     Fig. 1. Comparison of the CE cross sections 𝜎 |𝑆(𝑏)2| 

and 𝜎, evaluated at 𝑏𝑚𝑖𝑛
𝐷 , for mass range 26-112 at 

various incident beam energies on Bi and Au targets. 

The solid line acts as a guide to the eye. 

 

From Fig 1. it is clear that at 𝑏𝑚𝑖𝑛
𝐷  the values of CE 

cross sections 𝜎 and 𝜎|𝑆(𝑏)2| are in excellent 

agreement with each other i.e. the choice of 

projectile target nuclear potential do not affect the 

value of 𝑏𝑚𝑖𝑛
𝐷 . Further, at 𝑏𝑚𝑖𝑛

𝐷  the influence of 

strong nuclear interactions is nil or negligibly 

small. From above discussion it is clear that any 

value equal to and larger than 𝑏𝑚𝑖𝑛
𝐷  is safe to avoid 

the influence of strong interaction and ensures that 

the forward measurements corresponding to above 

said values of impact parameter are the pure CE 

measurements. 

 

In summary, the sensitivity of the direct 

scheme, used for the determination of safe 

minimum value of impact parameter, on the choice 

of nuclear potential is investigated by replacing 

single folded projectile target potential due to R L 

Varner by more realistic M3Y type double folded 

potential. It is found that the choice of nuclear 

potential does not affect the direct scheme to 

determine 𝑏𝑚𝑖𝑛 .  
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