Shape of 8Be nucleus in ${}^8Be_{(g.s.)}$, 9Be , ${}^{12}C^*$ and ${}^{24}Mg_{(g.s.)}$, ${}^{24}Mg^*$ nuclei.

Arun K. Jain^{1,2},* B. N. Joshi¹, and Nayneshkumar Devlani³

¹Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai

²Sri Satya Sai Institute of Higher Learning, Putthaparthy, Prasanthi Nilayam and

³Applied Physics Department, Polytechnic,

The Maharaja Sayajirao University of Baroda, Vadodara

FIG. 1: Spherical ${}^8Be_{(g.s.)}$ is formed by two α particles (of radius r_0) separated by $2R_0$.

There have been numerous investigations on clustering in various nuclei using cluster knockout reactions and cluster models. It has been shown [1–5] that $^8Be_{(g.s.)}$ nucleus is present in $^9Be_{(g.s.)}$ $^{12}C^*$ and $^{24}Mg_{(g.s.)}$, $^{24}Mg^*$ nuclei. $^8Be_{(g.s.)}$ being unstable nucleus $(\tau \sim 10^{-16}~{\rm Sec})$, it is surprising that $^8Be_{(g.s.)}$ forms part of some nuclei. While in the formation stage of these nuclei the loosely bound $^8Be_{(g.s.)}$ nucleus feels not only the strong nuclear forces but also the Coulomb force. How under these forces the shape of $^8Be_{(g.s.)}$, a loosely bound structure of 2- α system evolves in various nuclei?

In the shell model it is easy to visualize that

FIG. 2: First configurations of 9Be as $n+\alpha+\alpha$ a linear configuration.

 $^8Be_{(g.s.)}$ has 4 quanta of energy, i.e $4\hbar\omega$. It has quantum number $n{=}2$ (the radial quantum number) and $\ell{=}0$ (the angular momentum quantum number). It is thus a spherical nucleus.

The ${}^9Be_{(g.s.)}$ nucleus, is however, a stable nucleus formed of a neutron n and a ${}^8Be_{(g.s.)}$ nucleus. Now in an $n+\alpha+\alpha\to n+{}^8Be_{(g.s.)}$) nucleus there are two representative configurations shown in Fig2 and Fig.3.

As there is only short range n- α attractive nuclear force $|\vec{F}_{n\alpha 2}(r_{n\alpha 2})| > |\vec{F}_{n\alpha 1}(r_{n\alpha 1})|$, see Fig.2. We now decompose these $\vec{F}_{n\alpha 1}(r_{n\alpha 1})$ and $\vec{F}_{n\alpha 2}(r_{n\alpha 2})$ forces into \vec{F}_{nO} , the n- 8Be force at the center of mass of 8Be and forces between $\alpha 1$ and $\alpha 2$ induced by the neutron, n Thus.

From Fig.2, the first configuration of ${}^{9}Be$ we see that,

$$\vec{F}_{n\theta O}(r_{nO}) = \vec{F}_{n\alpha 1}(r_{n\alpha 1}) + \vec{F}_{n\alpha 2}(r_{n\alpha 2}) \quad (1)$$

We now define new forces \vec{f}_{α_1} and \vec{f}_{α_2} representing forces components on α_1 and α_2 when seen from a non accelerating (under the force

FIG. 3: Second configuration of 9Be as $n\text{-}2\alpha \perp$ to each other.

$$\vec{F}_{no}$$
 ⁸Be, i.e
$$\vec{f}_{\alpha_1} = \vec{F}_{n\alpha_1}(r_{n\alpha_1}) = \frac{1}{2}\vec{F}_{no}(r_{no})$$
$$= \frac{1}{2}[\vec{F}_{n\alpha_1}(r_{n\alpha_1}) - \vec{F}_{n\alpha_2}(r_{n\alpha_2})]$$
Similarly,

$$\vec{f}_{\alpha_1} = \vec{F}_{n\alpha_1}(r_{n\alpha_1}) = \frac{1}{2}\vec{F}_{no}(r_{no})$$

$$= \frac{1}{2}[\vec{F}_{n\alpha_1}(r_{n\alpha_1}) - \vec{F}_{n\alpha_2}(r_{n\alpha_2})]$$

It is to be noticed that the force $\vec{\alpha}_1$ and $\vec{\alpha}_2$ are equal in strength but opposite in direction. Besides this while \vec{f}_{α_1} is directed in $o\alpha_1$ direction the \vec{f}_{α_2} is directed in the opposite direction. i.e. in the $o\alpha_2$ direction. These forces lead to stretching of 8Be in the $(n\text{-}\alpha_1=\alpha_2 \text{ inline configuration.})$

Now in Fig.3 we see that the second configuration has force on O, the c.m. of 8Be , $F_{no}(r_{no})$ is,

$$\vec{F}_{no}(r_{no}) = \vec{F}_{n\alpha_1} \cos(\theta_{\alpha_1 no}) + \vec{F}_{n\alpha_2} \cos(\theta_{\alpha_2 no})$$
$$= \vec{F}_{\alpha_1}^z + \vec{F}_{\alpha_2}^z$$

while the forces
$$\vec{f}_{\alpha_1 x} = \vec{f}_{\alpha_2 x}$$
 are given by
$$= \vec{F}_{\alpha_1 x} = \vec{F}_{n\alpha_1}(r_{n\alpha_1}) \sin \theta_{\alpha_1 no}$$

and
$$= \vec{F}_{\alpha_2 x} = \vec{F}_{n\alpha_2}(r_{n\alpha_2}) \sin \theta_{\alpha_2 no} = -\vec{f}_{\alpha_1 x}$$

Both these \vec{f}_{α_1} and \vec{f}_{α_2} are equal and in opposite directions and both are directed towards o, i.e. in $\alpha_1 o$ and $\alpha_2 o$ directions. Similar arguments hold for the Y-direction. Thus under the 2^{nd} configuration the 8Be nucleus is compressed. Thus Figs.2 and 3 lead us to a 8Be nucleus of prolate shape in 9Be .

Similar to Figs2 and 3 we have Figs.4 and 5 for the $^{12}C^*$ and $^{24}Mg_{(g.s.)}$ and $^{24}Mg^*$ nuclei, where S represents α or ^{16}O in place of n of Figs.2 and 3 respectively. The other difference is that being broad structure the nuclei $^{12}C^*$, ^{24}Mg and $^{24}Mg^*$ make the Coulomb force dominate as far as the interaction of $\alpha^{-8}Be$ and $^{16}O^{-8}Be$ is concerned. Hence the direction of all the forces are reversed compared to Fig.2 and 3 of 8Be configuration. Therefore in the case of $^{12}C^*$, $^{24}Mg_{(g.s.)}$ and $^{24}Mg^*$

FIG. 4: First configurations of $^{12}C^*$ and ^{24}Mg , where S represents α or ^{16}O nuclei while S and 2α are in a line.

FIG. 5: Second configuration of 9Be as $n\text{-}2\alpha$ \perp to each other.

we except shrinkage of 8Be for z-direction in the S- α_1 - α_2 being in same line configuration of Fig.4. For the x and y-directions seen in Fig.5 we see a stretching of 8Be in $^{12}C^*$, $^{24}Mg_{(g.s.)}$ and $^{24}Mg^*$. That is the reason that Pilt and wheatly[5] considered a Helicopter form of ^{24}Mg with oblate $^8Be+^{16}O$ configuration.

- * Electronic address: arunjain45@gmail.com
- [1] G.F. Steyn, el al., Phys. Rev. C 59 (1977) 2097.
- [2] B. N. Joshi, el al., Nucl. Phys. A 1016 (2021) 122320
- [3] Abe, Clustering Conference, Strosberg. 1994.
- [4] C. W. Wang, el al., Phys. Rev. C 21 (1980) 1705.
- [5] A. A. Pilt and C. Wheatley, Phys. Lett **76B** (1978) 11.