Analysis of Λ-binding energies in the relativistic and non-relativistic approach

N. Neelofer^{1*} and M. A. Suhail²

¹Physics Section, Women's College, Aligarh Muslim University, Aligarh-202002, INDIA
²Department of Physics, School of Physical Sciences, College of Natural and Mathematical Sciences,
The University of Dodoma, TANZANIA
* email: nneelofer2013@gmail.com

Introduction

The Λ -hypernuclear systems have been analyzed by means of both relativistic and non-relativistic approaches. Relativistic approach takes into account the spin-orbit force occurring naturally in the theory [1] and also plays an important role in nuclear saturation phenomena [2]. Hence, in relativistic calculations, a good reproduction of the Λ -binding energies (B_{Λ}) is expected. Here, we make a comparative study of the B_{Λ} in hypernuclei using our non-relativistic approach [3] and the relativistic approach followed by Koutroulos and Grypeos [4].

Formulation

In our non-relativistic phenomenological approach, we have obtained a semi-empirical formula for B_{Λ} using the point nucleon (N) density $\rho_N(r)$ as an average of point proton density $\rho_p(r)$ and point neutron density $\rho_n(r)$:

$$\rho_{N}(r) = \frac{Z}{A_{c}}\rho_{p}(r) + \frac{N}{A_{c}}\rho_{n}(r). \tag{1}$$

The single-particle Λ -nucleus potential is obtained by folding zero-range ΛN potential with the point nucleon density of the core nucleus. Solving the eigenvalue equation for B_{Λ} , in the approximation $e^{-R/a} \ll 1$, leads to the following semi-empirical formula [3]:

$$B_{\Lambda} = D_{\Lambda} - \frac{\hbar^{2} \pi^{2}}{2\mu_{\Lambda \Lambda}} \{ C_{0}^{'} A_{c}^{-2/3} - C_{1}^{'} A_{c}^{-1} + \cdots \}, \quad (2)$$

where the parameters are defined in ref. [3].

In the relativistic approach [4], the average local Λ -nucleus potential is constructed by means of an attractive scalar relativistic single particle potential $U_s(r)$ and a repulsive relativistic single particle potential $U_v(r)$ which is the fourth component of a vector potential. Writing the eigenvalue equation, in a way analogous to that

of the non-relativistic case and solving for B_{Λ} (for heavy hypernuclei), the following expression [4] is obtained:

$$\begin{split} B_{\Lambda}^{(0)} &= \frac{\mu c^2}{\lambda} \left\{ 1 + \lambda D_+ (2\mu c^2)^{-1} \right\} \left\{ 1 - \left[1 + 2\lambda (\mu c^2)^{-1} \left(\frac{\hbar^2 \pi^2 \lambda}{2\mu R^2} - D_+ \right) \right] \right. \\ &\left. \left. \left(1 + \lambda D_+ (2\mu c^2)^{-1} \right)^{-2} \right]^{1/2} \right\}, \end{split}$$
(3)

where the symbols are defined in ref. [4].

Retaining the first term in the expansion of arctanx in powers of x, an improved form of B_{Λ} is obtained [4], which is given as

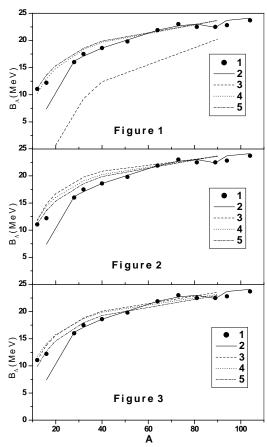
$$B_{\Lambda}^{(1)} = D_{+} - \frac{\hbar^{2}\pi^{2}}{2\mu g \left(1 + \left(\tilde{f}\eta_{0}R\right)^{-1}\right)^{2}R^{2}} \ , \tag{4} \label{eq:4}$$

where g, \tilde{f} and η_0 , defined in ref. [4], depend upon B_Λ but their values are estimated by using an approximate expression $B_{appr.} = D_+$ for B_Λ .

Result and Discussion

The radius and diffuseness parameters of the average nucleon density $\rho_N(r)$ are obtained [3] from the least square fit to eq. (1) for nuclei over a large mass number range. With these parameters, the χ^2 fit to the ground state B_{Λ} values of ${}^{28}_{\Lambda}Si$, ${}^{32}_{\Lambda}S$, ${}^{40}_{\Lambda}Ca$, ${}^{51}_{\Lambda}V$ and ${}^{89}_{\Lambda}Y$ is carried out [3] using eq. (2). The best fit value of D_{Λ} is 29.47 MeV. These parameters are then used to predict [3] the B_{Λ} values of ${}^{16}_{\Lambda}O$ and the heavy and spallation hypernuclei corresponding to the mass number range A = 64, 73, 81, 94 and 104. The experimental B_{Λ} data of ${}^{13}_{\Lambda}C$, ${}^{16}_{\Lambda}O$, ${}^{28}_{\Lambda}Si$, ${}^{32}_{\Lambda}S$, $^{40}_{\Lambda}\text{Ca}, \, ^{51}_{\Lambda}\text{V}, \, ^{89}_{\Lambda}\text{Y}$ and the upper limits of B_{Λ} in the case of the above mentioned mass number range, are shown as 1 in all the given figures. While our calculated B_{Λ} values obtained from fitting [3], along with the predicted values, are represented as 2 in all figures.

The B_{Λ} values calculated in ref. [4], are shown in the figures for $A=12,\ 16,\ 20,\ 32,\ 40$ and 90. The calculated B_{Λ} values [4] for A=140 and 208 are excluded from the plots as their experimental values are unavailable. The $B_{\Lambda}^{(0)}$, $B_{\Lambda}^{(1)}$ and B_{Λ} (exact) values, in ref.[4], with $D_{-}=443$ MeV, $D_{+}=30.77$ MeV and $r_{0}=1.022$ fm, are plotted as 3, 4 and 5 in Fig. 1. These values of B_{Λ} 's, further calculated in ref. [4], using $D_{-}=443$ MeV and the corresponding best fit values of D_{+} and r_{0} , are plotted in Fig. 2, as 3, 4 and 5.



In Fig. 3, the best fit values [4] of $B_{\Lambda}^{(1)}$ for $D_{-}=412.84$ MeV, $D_{+}=29.57$ MeV and $r_{0}=1.132$ fm are plotted as 3. The $B_{\Lambda}^{(1)}$ values [4] with $D_{-}=443$ (fixed) MeV, $D_{+}=29.03$ MeV, $r_{0}=1.147$ fm and $m^{*}=0.788$ m are plotted as 4. The calculated values [4] of $B_{\Lambda}^{(1)}$, with the parameters $D_{-}=590.15$ MeV, $D_{+}=29.50$ MeV, $r_{0}=1.123$ fm, $m^{*}=0.722$ m, obtained by least

square fitting of experimental data, are plotted as 5 in Fig. 3.

From Fig. 1, we can see that the $B_{\Lambda}^{(0)}$ values (shown as 3), are way-off from the experimental data, while the $B_{\Lambda}^{(1)}$ and B_{Λ} (exact) values (shown as 4 and 5), are quite close to each other but differ slightly from the experimental data for comparatively lower mass numbers. The B_{Λ} values obtained by us [3] (shown as 2 in all the figures) give a fairly good account of the experimental data over a wide range of mass numbers. The difference in the predicted B_{Λ} of $^{16}_{\Lambda}O$ is not surprising as our semi-empirical formula for B_{Λ} is valid for heavy hypernuclei. The best fit values of $B_{\Lambda}^{(0)}$, $B_{\Lambda}^{(1)}$ as well as B_{Λ} (exact) in Fig. 2, (represented as 3, 4 and 5), are comparatively not so good for A< 60.

The $B_{\Lambda}^{(0)}$ values (shown as 3) are quite unrealistic in Fig. 1 and show considerable deviation from the experimental data in Fig. 2. The $B_{\Lambda}^{(1)}$ values (shown as 5), in Fig. 3, are comparatively better, while the others (shown as 3 and 4), are more or less same but show deviations from the experimental data for lower mass number range. The D₂ parameter seems to play a significant role in the fitting. With the higher value of D₂ and only marginal changes in other parameters, the B_{Λ} values are reproduced fairly well (shown as 5) in Fig. 3.

In comparison to the relativistic case [4] our non-relativistic results [3] give a much better reproduction of the experimental data, as is evident from Figs. 1, 2 and 3. This anomaly might be due to the approximations chosen in relativistic semi-empirical mass formula [4] for B_{Λ} of heavy hypernuclei. However, more information is needed to draw any definite conclusion about the significance of relativistic approach for the determination of B_{Λ} .

References

- [1] R. Brockmann and W. Weise, Phys. Rev. **C16**, 1282 (1977).
- [2] L. D. Miller, Phys. Rev. C9, 537 (1974).
- [3] M. Z. Rahman Khan et al., Pramana- J. of Phys., Vol. 48, No.5, 1027 (1997).
- [4] C. G. Koutroulos and M. E. Grypeos, Int. Centre for Theor. Phys., Preprint IC/87/93.