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Introduction

Over the years, several efforts have been
made to investigate the formation of super-
heavy elements (SHE) [1]. Such experiments
are extremely challenging as the formation
of SHE is strongly inhibited by a dynamical
non-equilibrium fission process called quasi-
fission [2]. The evolution of several degrees
of freedom in dynamics of fusion and de-
cay of the super-heavy composite system can
be understood by studying the properties of
fusion-fission and quasi-fission products. Un-
derstanding the competition between quasi-
fission and fusion-fission could lead to more
reliable predictions to choose the best combi-
nations of projectile and target to form new
isotopes of SHE. The identification of quasi-
fission events is not trivial, since after the
fusion forming a CN, the most probable de-
cay mode is fission. The mass distribution of
quasi-fission and fusion-fission generally show
a considerable overlap which makes it difficult
to unambiguously disentangle these processes.
A key quantity characterizing quasi-fission
is its timescale (sticking time between cap-
ture and breakup). Earlier measurements of
mass-angle distribution (MAD) [2, 3] showed
that the timescale corresponding to the quasi-
fission process is significantly shorter than the
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typical timescale of the fusion-fission process.
Thus, the measurements of MAD offers a key
insight into the quasi-fission process. The al-
ready existing fusion probability and evapora-
tion residue cross-sections for the near super-
heavy nucleus 256Rf encourage us to investi-
gate its reaction dynamics. With this motiva-
tion, we have performed the MAD measure-
ments for 256Rf nuclei populated through the
reaction 48Ti + 208Pb. The results from MAD
have been used to check the presence of quasi-
fission processes in such a heavy system and
are reported in this paper.

Experimental Setup
The experiment was carried out using a

pulsed beam of 48Ti obtained from the 15UD
Pelletron + LINAC accelerator facility at In-
ter University Accelerator Centre (IUAC),
New Delhi. 48Ti beam (current = 0.7 pnA and
repetition rate = 250 ns) with the laboratory
energy of 275 MeV was bombarded on 208Pb
target of thickness 251 µg/cm2 with carbon
backing of thickness 20 µg/cm2. The target
ladder was tilted to an angle of 40◦ with re-
spect to the beam axis in order to minimize
the shadowing to position-sensitive multiwire
proportional counter (MWPC). For the fission
fragment detection, two large area (5′′ × 3′′)
MWPCs were used. MWPCs were kept at a
distance of 25 cm from the target on movable
arms on either sides of the beam axis at an-
gle of 73◦ and 54◦ respectively. The fission
fragment detected in any of the MWPCs in
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coincidence with RF is used as a trigger for
list mode data collection with LAMPS as the
acquisition software.

Data Analysis and Results
Data analysis was performed using the two-

body kinematics [4, 5]. For the pulsed beams,
the measured positions and times-of-flight in-
formation of the fragments allowed direct re-
construction of the fragment velocities [5].
The recoil velocity components of the com-
posite system parallel V‖ and perpendicular
V⊥ to the beam, were determined from the
measured folding angle and fragment veloci-
ties. Binary fragmentation events originating
from full momentum transfer are character-
ized by V‖ − VCN = 0 and V⊥ = 0. Fig. 1
shows the two-dimensional plot of V‖ − VCN

and V⊥ for the 48Ti + 208Pb reaction at an
excitation energy of 56.4 MeV.

FIG. 1: The scatter plot of V‖ − VCN vs. V⊥ for

the 48Ti + 208Pb reaction at an excitation energy
of 56.4 MeV.

Following the iterative correction for energy
loss in the target, the mass ratio of all binary
events and the centre-of-mass (c.m.) scatter-
ing angle θc.m. were deduced. The mass ratio
is defined as:

MR =
m1

m1 +m2
=

V2
V1 + V2

,

where m1, m2 are the two fragment masses
and V1, V2 are the center-of-mass velocities of
the fragments. Since both fragments are de-
tected, MAD is populated twice [4], at (MR,
θc.m.) and (1 - MR, π - θc.m.). The measured
MAD for the reaction is shown in the upper
panels of Fig. 2. Here, the fission-like events
clearly show a correlation of fragment mass
with the emission angle, resulting from the
short reaction times (≤10−20s). The shape

FIG. 2: Measured MAD scatter plot for
48Ti+208Pb reaction (upper panel). Lower panel
shows the projected MR spectrum corresponding
to the rectangular gated region where red line rep-
resents Gaussian fit to the region around MR=0.5.

and results of MAD for the present case are
consistent with that of the reactions using the
48Ti beam in literature [6]. The lower panel of
Fig. 2 indicates the projection of the gated re-
gion of MAD (in rectangular gate shown in the
upper panel) onto MR axis. The side shoul-
ders in MR distribution are attributed to the
contribution from asymmetric fission compo-
nents. The fragment MR distribution is fit-
ted with the Gaussian function and the ex-
tracted width (σMR

) is 0.15, larger than that
for 48Ca+208Pb [6]. This difference in σMR

may be ascribed due to the influence of en-
trance channel magicity and charge product
effects.
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