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The statistical models based on different
statistical ensembles (micro canonical, canon-
ical and grand canonical) have been widely
used to describe the nuclear multifragmenta-
tion reaction in heavy ion collisions ate inter-
mediate energy [1, 2]. The basic assumption
behind this is attainment of statistical equilib-
rium at the freeze out stage. In such models
of nuclear disassembly, the populations of dif-
ferent channels is solely decided by their sta-
tistical weights in available phase space. The
micro canonical ensemble is applicable in the
case of fixed particle number and fixed energy
but any practical calculation based on this is
extremely difficult because of these two con-
straints. The canonical model on the other
hand is applicable when the number of parti-
cles is finite (as would be in experiments) but
the energy is varying though the average num-
ber is constrained to a given value [2]. The
grand canonical on the other hand is for both
varying particle number as well as energy. The
grand canonical version of the model [3] for
nuclear multifragmentation has been known
for long time and is the most commonly used.
But it is more important to know how to treat
an exact number of particles rather than an
ensemble of particle numbers since the given
dissociating system (finite nucleus) has a fixed
number of particles. The answer is the canon-
ical ensemble which deals with a given number
of baryon and lepton numbers. But these con-
straints of baryon and lepton number conser-
vation put severe restrictions on calculation
of the partition sum. This led to the more
frequent use of the grand canonical ensemble
for describing the fragmentation of finite nu-
clei. The main motivation of this work is to
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formulate a transformation relation so that re-
sults from one ensemble can be converted to
the other easily with the help of such rela-
tion. Consider the values of any observable in
canonical and grand canonical ensembles are
Rc(N0, Z0) and Rgc(fn, fp) respectively at a
given temperature and freeze-out volume. N0

and Z0 are total number of neutrons and pro-
tons for canonical case and for grand canonical
case these are average numbers at fugacities
fn and fp respectively(total number can fluc-
tuate as N and Z). Then the canonical value
of the observable can be expressed can be ex-
pressed in terms of grand canonical model out-
puts only from the relation
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where σ’s are the particle variances. With
this one can avoid the computer intensive
partition sum calculation of the canonical
ensemble and directly arrive at the results
from the grand canonical ensemble ones.
We have also examined the conditions of

convergence of canonical and grand canonical
ensembles under different conditions. It
is well known that results from canonical
and grand canonical ensembles agree in
the thermodynamic limit that is when the
number of particles become infinite. But in
the case of finite nuclei too, they converge
under certain conditions [4]. These conditions
of equivalence or convergence can be easily
tested using the above transformation relation
[Eq. (1)]. It is observed that results from
both the ensembles converge more and more
if either temperature or source size or freeze
out volume is increased or asymmetry of
the fragmenting nucleus is decreased. The
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importance of the transformation formula is
that it can be used to extract results from
canonical model using those from grand
canonical in the domain where the results
from these two ensembles do not converge.
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FIG. 1: Multiplicities of Z =7 isotopes produced
from the fragmenting system Z0 =28, A0 =64
calculated from canonical (solid line) and grand
canonical (dotted line) model. The triangles rep-
resent the canonical result obtained from grand
canonical model by using Eq. 1.

have been examined in order to test the
predictability of the formula developed for
converting results from grand canonical to
canonical ones. The isotopic distribution of
Z =7 nucleus is shown in the adjacent figure
and three results are shown, one is from the
canonical model, another is that from grand
canonical model and the third is the results
from the transformation formula converting
results from grand canonical to canonical. It
is seen that results from the transformation
formula agree with that of the canonical to
a large extent The other observables which
have also been tested are mass distribution at
different temperatures, the size of the largest
cluster and in each case conclusion is similar.
Another important domain where this

transformation relation can be immensely
useful is while dealing with isoscaling [5]
and isobaric yield ratio parameters [6] and
also temperature measurement by double
isotope ratio method [7]. These isoscaling
and isobaric yield ratio equations as well as
the equation for measuring the temperature
have been derived using the yields of the frag-
ments in the framework of grand canonical
ensemble. Hence their applicability in case
of finite nuclei is limited and is not valid for
all energies, source size as well as asymmetry
ratio [8]. These aspects can be tested since
through the transformation relations one
can also derive easily the results in the
corresponding canonical ensemble. Also using
the inverse set of transformation relations
one can easily switch over to grand canonical
results from a given set of canonical ones.
The transformation relations connecting

the two ensembles is not valid in the temper-
ature or density regime where the liquid gas
phase transition occurs. Fluctuations become
extremely high in this domain which limits
the applicability of the formula. One should
not also apply the formula in the region when
cross section is very small since in those
region higher order corection terms to the
formula should be taken into account.
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